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The steady motion of a sphere in a dusty gas 
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(Received 28 April 1967) 

The paper considers the effect on the steady flow past a sphere of a uniform up- 
stream distribution of dust particles having a small relaxation time. Using a 
potential solution as an upstream model of the gas flow at large Reynolds num- 
bers R, an equation for the concentration of dust near the sphere is derived and 
solved numerically. It is shown that in this inviscid model there exists a dust- 
free layer adjacent to the sphere. A drag force is computed, and it is also shown 
that particles do not collide with the sphere until the Stokes number G is greater 
than +z if we assume the gas flow unchanged by the presence of dust particles, 
which is in agreement with previous work of Langmuir & Blodgett (1946). The 
paper concludes with a discussion of the effect of a viscous boundary layer in 
which it is suggested that the dust-free layer is preserved when GR* B 1, but is 
prevented from forming by the viscous boundary layer when aR) < 1. 

1. Introduction 
Interest in problems of mechanics of systems with more than one phase has 

developed rapidly in recent years. Situations which occur frequently are con- 
cerned with the motion of a liquid or gas which contains a distribution of solid 
particles. Such situations occur, for example, in the movement of dust laden air, 
in problems of fluidization, in the use of dust in gas-cooling systems to enhance 
heat transfer processes, and in the process by which raindrops are formed by the 
coalescence of small droplets which might be considered its solid particles for the 
purpose of examining their movement prior to coalescence. 

The mathematical description of such diverse systems must of course vary 
widely. In  problems of fluidization, for example, the bulk concentration of par- 
ticles is large, whereas in problems of dust flow this will be small. This factor may 
bring considerable simplification to the theory of dusty gas flows, since the effect 
of one particle on another is not so pronounced, and a good approximation might 
be expected by assuming the motion of one solid particle not to be influenced 
by the surrounding particles which will be in general many particle diameters 
away. The work of this paper is concerned with dusty gas flow under this sim- 
plifying assumption. 

Much work has already been done on such models of dusty gas flow as, for 
example, the work of Carrier (1958)) Rudinger (1964) and Marble (1962) on 
shock waves in dusty gases, and the discussion of the Prandtl-Meyer expansion 
by Marble (1962). The author’s interest in this subject was aroused by a paper of 
Saffman (1962) in which the Orr-Sommerfeld equation for small disturbances 
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in plane parallel flow of a dusty gas was formulated. Using the model described 
by Saffman, the author considered in more detail the stability of plane Poiseuille 
flow (Michael 1964). 

In  this paper the author has studied the steady motion of a sphere in a dusty 
gas. The dust is represented by a large number density N of small dust particles 
whose volume concentration is small, but with appreciable mass concentration. 
It is assumed that the individual particles of dust are so small that a Stokes 
flow approximation to their motion relative to the gas is appropriate. The equa- 
tions of motion give rise to two additional independent parameters due to the 
presence of the dust, which may be taken as the mass concentration of the dustf 
and a relaxation time r.  The latter parameter is representative of the time scale 
on which the velocity of the dust adjusts to changes in the neighbouring gas 
velocity. When r = 0 this adjustment is instantaneous, and we have a limiting 
case in which the dust moves with gas at  each point. It may be seen that the mo- 
tion in this case is closely related to the flow of a clean gas. We consider here the 
flow of a dusty gas for small non-zero values of r by a perturbation of the solution 
at r = 0. 

In considering the steady flow past a sphere of radius a, although the relative 
motion of small dust particles to the gas is taken to be a Stokes flow, i.e. of small 
Reynolds number based on particle size and relative velocity, the motion of the 
gas in the large, past the sphere will in many cases of interest occur a t  large 
Reynolds numbers based on the length scale a. Here we have chosen to consider 
this Reynolds number to  be large, and as a first step towards the solution the 
paper considers in detail the perturbation of the unseparated potential flow for 
a sphere. This has the advantage of mathematical simplicity, and although it is 
not the precise solution for the irrotational approach to the sphere when separa- 
tion occurs, it nevertheless has qualitatively the correct form in the neighbour- 
hood of the upstream stagnation point. 

The analysis shows that when a non-singular perturbation of a potential flow 
is assumed the concentration of dust particles becomes logarithmically infinite 
at  the front stagnation point of the sphere. We fmd also that dust particles 
cannot reach the sphere except at  the front stagnation point, there being a dust 
streamline emanating from that point which delineates a thin dust-free layer 
adjacent to the sphere whose thickness is of order ua, where u is the Stokes num- 
ber r Ula, with U the velocity of the sphere. 

The paper shows also that a drag force on the sphere can be calculated on the 
basis of the unseparated potential flow, and we include a short discussion of a 
related topic which confirms a result previously given by Langmuir & Blodgett 
(1946), namely that if changes in the gas flow due to the dust particles are neg- 
lected dust particles begin to  collect on the sphere when LT = A. 

The last part of this paper gives a discussion of the modifications to the ‘in- 
viscid’ solution due to the viscous boundary layer at  large Reynolds numbers. 
It is seen first that the viscosity cuts off the build-up of the concentration of 
particles near the sphere. We find also the critical parameter in this part of the 
discussion is cR4, where R is the Reynolds number Ualv, with the gas kinematic 
viscosity v. This parameter represents the ratio of the width of the dust-free 
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layer to the width of the viscous boundary layer. When aRh & 1 it is seen that 
the dust-free layer is not substantially changed, but when aR4 is not large a 
consequence of the reduction of the tangential velocity in the boundary layer is 
that the dust-free layer ceases to exist. 

2. Formulation 

are the following: 
The equations used to represent the motion of a dusty gas, given by Saffman 

= -gradp+pV2u+KN(v-u), (1) 

( 2 )  divu = 0, 

=K(u-v) ,  

aN 
- +div Nv = 0. 
at 

The gas and dust velocities are u and v respectively. N is the number density of 
dust particles, each of mass m. K is the Stokes coefficient of resistance andp, p, p, 
the pressure, density and viscosity of the gas. The time relaxation parameter 7 is 
given from (3) by r = m/K. When r+O, (3) shows that u-tv.  Substituting for 
(u - v) in (1) from (3) we have 

= -gradp+pV2u-Nw~ 

When r + 0 (5) becomes 
1 

(1  + f) (g + (u. V) u (6) 

where we have now introduced the mass concentration of dust f = mN/p, and 
v = p/p. In  this limiting case when we put u = v in (4) and use ( 2 )  we find that 

aN 
-+(u.V)N = 0,  
at 

which means that N remains constant in the neighbourhood of any given dust or 
gas particles. This result of course depends on the gas being assumed to behave 
incompressibly from ( 2 ) .  The simplest case to take is one in which N is uniform 
and equal to No in the incident flow, in which case N = No everywhere. It then 
follows that f = fo, a constant, in this limit. Equation (6) then represents the 
flow of a clean gas with uniform density p( 1 +to) and viscosity p. The solution for 
the dusty gas flow at the Reynolds number R is then equivalent to the solution 
for a clean gas at  the increased Reynolds number R( 1 +fo). 

For flow past a sphere in which the gas velocity U changes on the length scale 
of the radius a of the sphere, a perturbation on the solution for r = 0 can be ob- 
tained in terms of the small dimensionless parameter a = rU/a. For spherical 
dust particles of radius d and density pa the condition a < 1 becomes 
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This condition does not put any great restriction on R in general. For example, 
withpd M 1, in air, a = 10 cm, d M 6 x lo7 approximately. 
This condition is satisfied with U = 103cm/sec say in which case R N” lo5. It 
is thus appropriate to consider the perturbation of a flow past a sphere at  large 
Reynolds numbers. Also it is easily verified that the neglect of dust sedimentation 
due to gravity in equation (3) is justified in these circumstances, in the sense that 
the terminal velocity of free fall of particles is much smaller than U .  

We consider now the potential flow past a sphere as the limiting case when 
7 = 0, neglecting for the present viscous boundary layers and separation effects. 
For this solution V2u = 0 in equation (6) and the effect of the dust is simply to 
scale up the pressure variations over the sphere by the factor (1 +fo). This of 
course leaves the drag on the sphere zero in this approximation. Let u0 represent 
the unperturbed velocity of the dust and gas, where 

cm werequire R 

uo = grad# 

and 

r ,  6’ being spherical polar co-ordinates from the centre of the sphere, with 6’ = 0 
as the downstream direction, and U the mainstream velocity. 

In  the perturbation let u = uo+u‘, v = uo+v’ represent the gas and dust 
velocities for a small non-zero value of 7,  where u’, v‘ represent small perturbation 
velocities of order 7. Also we suppose N = No + N ’ ,  f = fo +f’ and p = po  +p’. 
Neglecting the internal effect of viscosity in the gas we have from (5) 

(uo + u’ . V) u, + u’ + (fo +f’) (u, + v’ . V) u, + v’ = - ( l / p )  grad ( p ,  +p’) . 
First-order terms alone then give 

(u, . V) u’ + (u’ . V) u, +fo{(v’ . V) u, + (u,. V) v’} +f’(uo. V) u, = - (l/p) gradp’, 

or if we write w‘ = u’ + fov’, 

(u,. V) w’ + (w’ . V) u, +f’(uo. V) uo = - (l/p) gradp’. 

7(uo. V) uo = u’ - v‘. 

( 7 )  

(8) 

Similarly the linearized form of equation (3) for the dust flow is 

Further, from equation (4) we have 

div (f, +f’ . u, + v’) = 0, 

which becomes in the first order 

fo div v’ + (u, . V) f ’ = 0, (9) 
using (2). 

We can deduce an equation for f ’ from (8) and (9) by eliminating V‘ and we find 

( u , . V ) f ’  =fO~div(uo .V)uo,  

and since (u, . V) U, = grad $u; we have 

(Uo. v) f’ = fo7v2~Ug.  
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Assuming that we have found f '  from (10) we may obtain U' and V' as follows. 
Since divu' = 0 write u' = curl A, where A has one component A(r,  8) perpen- 
dicular to the ( r ,  8)-planes. Then 

v' = curl A - 7(u0. V) u,, 
and w' = ( l+f , )cur lA-fO~grad&u~.  

Equation (7)  then becomes 

(uo.V){(l +fo)cur lA-fo~grad~u~)+{( l  +fo)cur1A-fo7grad+u~.V}u, 
+ f ' grad &ut = - ( l / p )  gradp'. (1  1) 

This equation has two component equations to be solved for A(r ,@)  and p',  
when f '  is known. It may also be written in the form 

= - (l/p) gradp", (12)  (1 + f,) {(u,. V) curl A + (curl A .  V) uo} + f' grad 

wherep" = p'-fo7(uo.grad&u~). 
Returning now to equation (10) for f '  we find that 

which is always positive, and an even function about the plane 8 = in-. Thus f' 
increases monotonically along a streamline and the rate of increase is symmetric 
about 8 = in. Written in terms of r and 8, (10) becomes 

This equation cannot be integrated in a simple form in general, but some features 
of the solution may easily be deduced. Along the axis of symmetry upstream, 
where 8 = 7r the equation can be integrated to give 

where we have now written r for r/a.  This shows that as r+ 1, f '  increases to 
infinity logarithmically, i.e. as the front stagnation point is approached. Also 
since from equation (10)  f' increases in the direction of u0, this singularity is 
continued around the surface of the sphere for all values of 8. This can be seen in 
mathematical terms by writing 

in which the first term represents the logarithmic singularity a t  8 = 7r. Substitu- 
tion into equation (13) gives 

After cancelling ( r  - 1)  in the first term this equation for A(8) becomes at  r = 1, 

d A  
z=- a sin 8 

37f0 U{ 1 + 3 cos e + 2 cos2 8) 

12-2 
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Thus 
3Tf u 

f '  = - ( 9 s )  log (r - 1) - 1 {2 cos 8 + 610g sin 4/31 + 0 
2a a 

and the constant of integration may be used to match the value off '  at  6' = 77. 

Comparing with (14) we find 

1 77 
log (r - 1 )  +$ cos2&8 + 4 log sin &/3- ~ - & log 3 + . 

2u 43 

To obtain a numerical solution for f '  the author is indebted to Miss S.M. 
Burrough who has performed a numerical integration of equation (10) along 
some specific streamlines. 

In  dimensionless form the unperturbed streamlines are given by 

( r z - i )  sin28 = k ,  (15) 

and (10) may be written 
af I Uo- = f , jTv2&U~, 
as 

where af ' / as  represents the rate of change off ' with length along a streamline. 
Using (15) to eliminate 8 we may deduce the following expressions for af/ar and 
af/a6' on the streamline k ,  wheref = 2af ' /9 f07U, 

~ 2kr 

In  the expression for afp the negative sign is taken from 8 = 77 to 8 = 477, 

and the positive sign from 8 = 4~ to 8 = 0. By numerical integration using Simp- 
son's Rule, values off were obtained at  points along the streamlines given by 

The integration procedure is complicated by the fact that both the above formu- 
lae need to be used on each streamline. In  the neighbourhood of 6 = in, @/a0 
must be used since if/& becomes infinite there. Near 13 = 0 and 8 =n, at large 
distances from the sphere, the af/a/3 formula becomes unsuitable because equal 
intervals in 6 represent increasingly large distances along the streamlines. The 
numerical integration was carried out in the range 0 < 477, the two separate 
integrations being joined in the neighbourhood of 8 = $77. The integration from 
8 = &r to 6' = 7~ follows easily from the results for 0 < 8 < $77. The author has 
available tables of values off along each of the selected streamlines, but here the 
results are only summarized in figure 1, in which contour lines of constant f are 
shown. Figure 2 gives the ultimate value off downstream as a function of k. 

k = 0.111, 0.16, 0.25, 0.36, 0.4489, 0.4624, 0.5, 0.6084, 0.64, 0.9025, 0.9409, 1.0. 
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We notice that the dust concentration is increased on all streamlines, and this 
appears to conflict with the conservation of dust particIes. If uf is the perturbed 
gas velocity downstream parallel to the axis of symmetry we have 

y( U + u’) ( f ,  +f’) dy = InJow yUf,dy, 

where y is the distance from the axis. Since also yu’dy = 0 from the equation 

of continuity of the gas we find to the first order in the perturbation quantities 
10- 

co 

y f ’dy  = 0, 
s , = 0  

which is in contradiction with the result that f > 0 downstream on each stream- 
line. This points to an interesting feature of this solution, namely that dust 

FIGURE 1. Contour lines of constant f. 

streamlines separate from the sphere at  the front stagnation point and leave a 
thin dust-free boundary layer adjacent to the sphere whose thickness is of order r .  
This layer approaches an a.symptotic radius from the axis downstream repre- 
sented by k = k,. The value of k, can be found by equating the excess dust in 
the mainstream, represented in figure 2, to the loss of the mean dust concentra- 
tion nk,f,a2 in the wake 0 < k < k,. The equation for k, becomes 

We may obtain further confirmation of the dust separation when we examine the 
boundary conditions at the sphere. Clearly we must have u: = 0, at r = a;  it 

zui) when r = a. 
follows from (S) that a vf  = -7--(1 

ar 

Thus at  r = a, vi = PvU sin28, which is 
find vr > 0 at r = a,  except when i3 = 0,  and n. 

0. Further, since (u,. P) = 0 a t  r = a we 
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Ruling out the case in which the sphere acts as a steady source of dust, we  
must conclude that there is a separating streamline for the dust, which starts 
at the front stagnation point. In  the first approximation the position of this 
separation line will be given by the equation (v . fi) = 0, or 

(uo + u’ - 7(u,. V) uo. fi) = 0, (17 )  

where fi is the normal to the separation line. 
3.0 - 

2.5 - 

2.0 - 

5 1.5 - 
4 

1.0 - 

0.5 - 

0 
0 2  04 0 6  0 8  1.0 

k 

F I G ~ E  2. Dust concentration downstream. 

In order to find this line it would be necessary to obtain u’ from equation (1 1). 
It requires a substantial numerical integration to find A(r,  e),  since f ’ is only 
known in numerical form, and the author has not attempted this. However, it  is 
of interest to note a few more points on the structure of the solution. 

It is clear that a solution of this form cannot be strictly valid as a linear per- 
turbation in 7.  The existence of a separation line avoids the difficulty of having a 
logarithmically infinite value off’  at r = a, other than at the stagnation point. 
Nevertheless, if a linearized solution is to be valid in which the thickness of the 
layer is of order 7 equation (14) suggests that the value off ’ on the separation 
line will be small only to the order 710gr. In  fact the appearance of the logarith- 
mic singularity in f ‘  at the sphere stems from the process of linearization in 
which equation (10) for f’ has become inhomogeneous. Later in the discussion, 
in considering the more restrictive case when f o  is small, we are able to solve the 
equation divfv = 0, without having to linearize in f, and it is then seen that 
f/fo is O( 1 / ~ ) ~  in the neighbourhood of the separation line. 

The equation of momentum for a dust particle traversing this line is 
7(V2/Rf) = (u. fi), 



The steady motion of a sphere in a dusty gas 183 

where R’ is the radius of curvature. It is then clear that (u . fi) cannot be zero on 
such a line, so that the gas particles must flow through the separation line. Since 
there is no impulsive mechanism which could make the gas particles change their 
velocity suddenly it is necessary to make both tangential and normal components 
of u continuous across the line. Furthermore, the gas pressure must also be con- 
tinuous across this line. If we regard the position of the separation line, u, and 
p as prescribed, the problem of solving the inviscid equations of motion for the 
gas adjacent to the sphere appears to be overdetermined. This apparent difficulty 
arises because this formulation of the boundary-layer problem presupposes that 
the outer solutions can be found independently of the boundary-layer solution, 
and these solutions used to impose boundary values of u, p and the position of the 
.separation line on the inner solution. When we examine the problem further it is 
clear that this is not so. One might expect the action of the gas pressure in the 
outer solution to make for a solution of elliptic type. This is confirmed by an 
examination of equation (12). I f p “  is eliminated by taking the cud, the highest- 
order derivatives in the equation for A are of the form (1 + f ,) (u,,. V) V2A, 
showing that the equation has real and imaginary characteristics. This tells us 
that the solution U’ cannot be obtained simply by forward integration from up- 
stream, and that it will depend on boundary conditions at  the sphere. Thus it 
appears that the inner and outer solutions are coupled to each other, the solution 
in each region being dependent on that in the other. 

To conclude this section we note that we can now establish a condition, 
a posteriori, for the validity of the Stokes flow assumption for the motion 
of dust particles relative to the gas. Equation (8) shows that the relative 
velocity is of order (TU. It is therefore necessary that uUdlv < 1, which gives 
R2 < g(p/pd) For the numerical values given previously this requires 
R2 < 6 x 10l2 approximately. 

3. Small values of f o  

The difficulties outlined above do not appear if we make the further restriction 
thatf, is small. Equation (9) then shows that f ’  is small of the second order, and 
to the first-order equation (7) tells us that u’ = p‘ = 0. Equation (8) gives 

v’ = -7(u0.V)uo, 
so that v = uo+v’ 

= grad (4 - +r(grad 4)”). 
Thus v remains a potential field in this case with potential 

The equation for dust streamlines is now 
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When (T = 0 this equation integrates to equation (15) and it is interesting to trace 
the divergence of the gas particles from the paths given by (15). In order to do so 
we write the equation of the streamline in the form 

(r2- I/r)sin28 = k+k'(O),  

where k'(8) is a small change in k, of order (T, representing the displacement of the 
particles at the angle 8. We then have 

e 
FIGURE 3. Displacement of dust particles from initial streamlines. 

and by eliminating (dr/dB) between (18) and (19) we find the following equation 
for k'(8) to the first power in v 

With the assistance of Miss S.M.Burrough the author has integrated equa- 
tion (20), along the three streamlines k = 0.25, 0.5, 1.0, and the values of k' are 
shown in figure 3. As the sphere is approached from upstream k' becomes initially 
negative, showing that the dust stream does not immediately respond to the 
curving of the gas streamlines as they divide past the sphere. When the dust flow 
is deflected the diagram illustrates that it moves permanently to the outside of its 
initial streamline, thus increasing the value off downstream. 
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In this special case it is easy to solve equation (1 7)  for the dust separation line 
since now U’ = 0. If we write r = 1 + d ( B )  as the equation for this line we have, 
to the first order, 

7 

U 
(no. f L 1 ,  d - - u;(e),=, = 0, 

a6 
dB 

sine- +2cos8.6 = -$sin28. which gives 

The appropriate solution of the equation, which makes 6 = 0 at  0 = n-, is 

cose--- 
c0s3e+2) 3 3  

6=-(  3 
2 sin2 0 

It is easily seen that this separation line is tangential to the sphere at  6 = n-, 
diverges monotonically from the sphere as 8 -+ 0, and ultimately trails along the 
downstream axis 6 = 0. 

It is noticeable that in this case no formal difficulty arises inside the boundary 
layer, since the solution u = u, continues up to the surface of the sphere. The 
equation (10) for f ’ remains unaltered, and makes f’ logarithmically infinite in 
the second order at  r = a. But in this case an improved discussion of the distribu- 
tion off is possible. Since v is now explicitly known to the first order in 7 the 
equation for f can be solved in the form 

div ( fo{uo - 7(u0. V) u,}) = 0, 

We examine the solution of this equation in the neighbourhood of the separa- 
tion line where r - 1 is O(a). Since 1 - rp3 is O(a)  in this neighbourhood we need to 
retain terms of order v arising from the term - 7(u,. V) u, of v in the coefficient 
of a f p .  The equation is then 

af af 3a 
ax (x + $ sin26 + O(cr)) cos8- - Q(1 + O(cr)) sine- ae = - 2 (1 + 2 cosZB) (1 + O(v))f, 

We consider the equation 
where r = 1 + m. 

af af 3 g  
ax ae 2 

(x + 2 sin28) cos8- - Q sine- = - (1 + 2 cos28) f. 

With h = log f and y = x + g(0) we find 

ah 3 g  
ah aY { ““1 ae ae 2 
- ( y  - g + 2 sin2@ cos8- + sin 0 -  - 8 sine- = - ( 1  + 2 cos26), 

and we choose g(0) to make 

( - g + $ sin2 0) cos 8 - Q sin 6(dg/d8) = 0, 
namely g = $ sin28. 

The equation is then 
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and can be solved as previously by writing 

h = l(8) +m, 

sine- + 3 ~ ~ ( 1 + 2 c o s ~ 8 )  = 0,  
dl 
dB 

where 

which gives l(0) = 

The equation for m is 
am am 

y-cosO-+sinO- aY ae = 0, 

which means that m is a function of y sin2 8. 
Thus 

= A ( 1 + ~ ~ ~ 8 ) g u ; 2  
1 - cose 

exp { - 6c~ cos 8 + B'(y sin2 O ) }  

(21) 
= A (-) 1 +case 9 ~ 1 2  exp { - 6c~ cos 8 + F ( x  sin2 8 t- # sin4 e)}. 

i-cose 
In  order to decide the scale constant A and the function F it  is necessary to 

compare (21) with the solution integrated from infinity on the axis 0 = n-. Here 
we find 

1df - -27g  
- + O(cT2). 7 dr - 2r5(r3 - 1) 

On integrating with the condition f = fo at r = 00, we find 

Comparison of (21) and (22) shows that to reduce (21) to  1~ power of x we need 
F(xsin2B + 8 sin4B) to be of the form log (x sin2 8 + # sinad), in which case (21) 
becomes 

= A (1 + cos 0)9"2 (zs in2O+#~in~O)~exp(  -6~~cos8) .  
1 - cos6 

Clearly a = - 9 ~ ~ / 2 ,  and 

f = A[2(1-cos8)sin2&9]-9u~2(x+~sin28)-9u~2e~p( - 6crcosO). 

Finally, a t  8 = n- we find A given by 

9~ 15 4 5 7  

and f = f o  ( p) (1 - ( y  - $) + O ( c 2 ) ]  

A = f o  4 9 ~ / 2  ($) 9u'4 { 1 - ( - 6) + 0(c2)] exp (6a), 

12 9 4 4  

x [( 1 - cos 8) sin2 +O]-gu/2 (x + 8 sin2 8)-gu/2$xp { - SCT( 1 + COS~)}, 

Thus fife is O ( U - ~ ~ / ~ )  in the neighbourhood of the separation streamline. 
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4. The critical value of B 

Although the main discussion of this paper is based on small values of (r, it  is 
worthwhile to digress a little in order to make note of the critical value of B at 
which particles begin to collide with the sphere. This can be done on the assump- 
tions of $ 3  that the gas velocity is unchanged by the dust, and that head-on 
collisions with the sphere by particles on the upstream axis will be the fist to 
occur. 

The equation of motion for a particle on this axis is 

a v  V + { i  - (1/r3)} _ -  
dr BV 

9 

where w = vJU. We need to solve this equation with the boundary condition 
v =  - l , a t r =  +a. 

A a  

r 

FIGURE 4. Sketch graph of particle paths on the upstream axis of symmetry, 8 = 180". 

In  the (r,v)-plane (see figure 4) the equation has a singularity at  the point 
A (  1 , O ) .  The broken line AB represents the curve w + (1 - l / r3 )  = 0 which is the 
path of the gas particles. The behaviour of the solution near the front stagnation 
point is decided by the form of the singularity at  A .  To elucidate this write 
r = 1 + h, where h is small. The equation becomes 

dv w+3h 

neglecting square powers of h. This may be written in parametric form with the 
parameter t proportional to the time, 

- 
ah=-- BW ' 

dw/dt = - (v + 3h), 
dhldt = UW. 

Thus v and h have the form ea, where A2 + h + 3cr = 0. 
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When CT < the roots A, and A, are real and negative. The singularity is then 
a node, and the time taken for particles to come to the stagnation point ap- 
proaches infinity like log h, as h+O. When CT > A, A, and A, are complex con- 
jugate and the point A is then a spiral point. The particle paths are sketched in 
figure 4 in each case. When cr > we find v non-zero at  h = 0 and the particles 
collide with the sphere in a finite time. This result is in agreement with those of 
Langmuir & Blodgett (1946) who have also studied numerically the trajectories 
of particles. 

We should note here that despite the neglect of gravity in general it will 
influence the movement of a particle near the stagnation point in cases such as 
that discussed here in which the particle velocity becomes small. The general 
effect, in the case in which the sphere moves vertically can easily be seen. If the 
terminal velocity of free fall is denoted by eU,  where e is small, the equation of 
motion becomes 

the negative sign being used when the sphere moves vertically downwards and 
the positive sign for the sphere moving upwards. In  the latter case the singular 
point lies within the sphere and the effect of gravity will be to bring the particle 
on to the sphere in a finite time, irrespective of the value of cr. In  the former case 
the singular point is outside the sphere where r = 1 + ( € / a )  + O(e2).  When 

(T < (To = 1 E ( 1 + B + O ( t 2 ) ) ,  4e 

the particle will approach this point from upstream as t -+ co. There will now be a 
critical value of cr, vC > cr,,. When cro < CT < rc the particle spirals into the critical 
point in the phase plane, without collision, and when cr > crc it collides with the 
sphere. t 

5. The drag on the the sphere 
It is of mathematical interest to note that we can work out exactly the drag 

force on the sphere according to the linearized theory in and for the unseparated 
potential flow, although it will be substantially changed in practice by separation 
of the flow. 

The rate of increase of kinetic energy is 
m 1 [ ~ p ( U + U ’ ) 3 + ~ p ( f o + f ’ ) ( U + U ’ ) 3 - ~ p u 3 - - p f o U 3 ] ~ 7 T Y d y ,  

?I= 0 

which to the first order is 

Hence the drag force to the first order is accounted for solely by the rate of dissipa- 
tion of energy caused by the motion of the dust relative to the gas. The resistive 

t In a later paper the relation between rc and E will be calculated. 
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force on a dust particle is K(u' - v') and the loss of energy in time dt is 

K(u' - v')2 dt = mT{grad dt. 

The total loss of energy per particle is 
+-m 

m T j  {grad +@}2dt. 
--m 

To the first order in T we may regard the path of the particle in this integral 
as the unperturbed streamline. To evaluate it we write it in the form 

along the streamline k, where rl is the dimensionless value of r at 8 = Q;.. The 
number rate at  which particles pass between stream tubes k and k + d k  is 
na2N0 U dk.  Hence substituting for cos I3 we find the rate of dissipation of energy 

This integral can be evaluated by interchanging the order of integration when we 

get 

= W m m N ,  U3. 

Thus the drag on the sphere is 2.393numNo U 2 .  

6. Viscous effects 
Two ways in which the gas viscosity may be expected to change the pattern 

of dust flow are by the separation of the gas flow and by changes associated with 
the viscous boundary layer. A first step towards making allowance for separation 
could be a modification of the irrotational solution used for the gas flow. This is 
left as a topic for further investigation. 

When the viscous boundary layer is taken into account the length scale on 
which the gas velocity changes in the boundary layer is of order uIR4 < a. For 
the model to remain valid we need to be satisfied that this length scale remains 
larger than the size of the dust particles, since otherwise the law of force between 
the particles and the gas wiII need modification. The requirement is that d/a < 34, 
and this is seen t o  be true under the conditions previously envisaged. 

The next point of note is that the viscous boundary layer changes the way in 
which dust particles are concentrated near the front stagnation point. We can 
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gain some understanding of this by an examination of the equation for f on the 
axis close to the stagnation point, using the dominant terms in the expansion for 
the viscous flow about the stagnation point. If we write r = a + 7, where ria < 1 
we find 

where w is a velocity of order U .  
When fo is not assumed small we have from equations (8):and (9) the equation 

(u,.V)f'= f07div(uo.V)u, for f'. 

Substituting from (23) we find on the axis 8 = T ,  

Alternatively whenf, is small we find from equation (31) 

af { 1 + 0 (91 = - 6 (z) ; 1 1 + 0 (:)I, ar 
showing that f = fse4(7u'la)~la approximately, where f, is the value off at the 
stagnation point. 

Both results show that the proportionate change in f across this region is small 
of the order (TW/U) (ria). We may thus expect that the maximum concentration'of 
particles near the stagnation point to be given by the concentration at the 
edge of the viscous boundary layer. With 7 N a/RB we have from (14) that the 
maximum value off '  on the axis 8 = rr of the order (9Tfo U/4a)logR. With f o  
small we find from (22) the maximum f to be of the order f0(3B)9u~4(1 + O(cr)}. 

The next point of interest is the effect of the viscous boundary layer on the dust- 
free layer of inviscid theory at  points away from the stagnation region. In general 
terms we may reason that whereas the dust free layer is of order ga in its thick- 
ness, and the viscous boundary layer of order a/R*, dust particles may not be 
expected to enter the viscous boundary layer when uR* < 1. Taken together with 
previous requirements of the solution we now have 

With R = lo5, p = 0-0013 for air andp, N 1 we find 

1.7 x lo7 (a/d)2 < 5.3 x lo9 

approximately. With u = 10 ern the right-hand side of this inequality is not satis- 
fied with d N lo4 em as was previously postulated, and such particles might be 
expected to enter the viscous boundary layer. The condition under which par- 
ticles will avoid the boundary layer may clearly be rather critical. Under the 
conditions postulated here, for example, only particles for which (a/d)2 N lo9 
approximately are likely to do so. 
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When gR* 9 1 the dust separation line lies outside the viscous boundary layer 
and the solution based on inviscid gas flow might be expected to be valid. How- 
ever, some small modification is necessary, since the dust-free layer is tangential 
to the sphere at the stagnation point. This means that a small flux of particles 
which form the edge of the dust-free layer, having passed close to the stagnation 
point, will have entered the viscous boundary layer there. We can see by order 
of magnitude considerations that when fo is small and u' = 0 in the boundary 
layer, particles which enter the viscous boundary layer will tend to move out- 
wards towards the inviscid region again. A particle on the boundary layer at  a 
distance q from the sphere, where R*(q/a) N 1 will be carried along the boundary 
layer with a tangential velocity still of order U. Also the normal velocity of the 
gas tending to push the particle towards the sphere is of order Uyla. Since here 
mUz/a + KUq/a the situation remains qualitatively the same for such a particle 
as in the inviscid theory, and the particle will move towards the outside of the 
boundary layer under the dominant influence of the centrifugal force. The orders 
of magnitude of the velocities change when R*(q/a) < 1, but the result remains 
the same provided that the tangential velocities approach zero like UR&(q/af as 
7 4 0 .  

When (TR* < 1 the dust separation line is within the viscous boundary layer 
and very near the sphere. Since now mU2/a < KUq/a when R*(r/a) N 1 particles 
in the viscous boundary layer will move towards the sphere. We may represent 
the motion of one particle by the approximate equations 

75 = (u- l ) ,  
7jj = -(. i+Pq), 

where f [  is the tangential co-ordinate of the particle. Here u is the tangential gas 
velocity in the boundary layer which is of order U ,  and pr represents the inward 
normal velocity of the gas near the boundary. The coefficient /3 is positive, of 
the order Ula, and will vary with t on the scale a, and with 7 on the scale of the 
boundary layer width. However, we can see from this that a particle in the posi- 
tion (&o,qo) at time t = 0 has the position t N &,+ut, 7 N roe-jt and that 
q N qo e-(E-Eo)/a, in order of magnitude. When particles come so close to the sphere 
that R*(q/a) < 1 the orders of magnitude of the tangential and normal gas 
velocities change to UR*(y/a) and UR*(r/a)2 respectively. This does not make any 
qualitative difference to the paths of the particle near the sphere, although it 
changes the time scale so that q -+ 0 like llt instead of e-jt.  When rR* < 1 our 
general conclusion is therefore that under steady state conditions the viscous 
boundary layer prevents the formation of a dust-free layer since dust particles 
which pass close to the stagnation point are drawn closer to the sphere as they 
pass around it. 

The author is indebted to Miss S. M. Burrough for performing the numerical 
calculations described herein, and to Professor K. Stewartson for suggesting 
changes and additions to this paper which have improved the discussion and 
presentation at  several points. 



192 D. H .  Michael 

R E F E R E N C E S  

CARRIER, G. F. 1958 J .  Fluid Mech. 4, 376. 
LANGMUIR, I. & BLODGETT, K. 1946 U.S. Army Air Forces Technical Report no. 5418. 
MARBLE, F. E. 1962 5th Agard Colloquium, Combustion and Propulsion, p. 175. 
MICHAEL, D. H. 1964 J .  FZuid Mech. 18, 19. 
MICHAEL, D. H. & MILLER, D. A. 1966 Mathematika, 13, 97. 
RUDINCER, G. 1964 Phys. Fluids, 7, 659. 
SAXFMAN, P. G. 1962 J .  Fluid Mech. 13, 120. 


